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Dear Ms. Schiflett:

Please find enclosed the final summary report for Round 1 of our TMC/NASA

Cooperative Agreement project entitled "Role of Dendritic Cells in Immune Dysfunction".

We believe that we made several new and important observations in the investigations

funded by this program - some of our results have been submitted in 2 manuscripts

(attached as Appendix 1 and 2).

I am also pleased and excited to announce that some of the observations made in this

study led to a new avenue of research which will be funded by a 4-year grant from NRA-

96-OLMSA-03. This would not have been accomplished without the funding from the

TMC/NASA Cooperative Agreement, and without the support and encouragement shown

by you, Dr. Wainerdi and Dr. Pool.

I hope that the format and content of this summary is acceptable, but I will be ready to

make any revisions that may be required or suggested.

Thank you.

Sincerely,

Cherylyn A. Savary, Ph.D.

TEXAS MEDICAL CENTER

1515 HOLCOM BE BOULEVARD • HOUSTON, TEXAS 77030 ° (713) 792-2121

A Comprehensive Cancer Center Designated by the National Cancer Institute
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Specific Aims:

1. Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic

cells (DC).

2. Based on clues from spaceflight: compare the frequency and function of DC in normal donors and

immunocompromised cancer patients.

3. Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using

bioreactor-expanded DC) in animal models of experimental fungal infections.

Studies and Results:

Several novel and important observations were made during Round 1 which provide new insight

into DC immunobiology, DC dysfunction in cancer patients, and characteristics of DC growth in the 3-

dimensional culture conditions of the NASA bioreactor. These studies are summarized below.

Additional details are provided in the attached manuscripts (Appendices 1 and 2).

Generation of DC from CD34 + progenitor cells in NASA bioreactors. We and others have shown that

human DC can be generated from early hematopoietic progenitors (i.e. CD34 ÷ cells isolated from bone

marrow or from G-CSF mobilized

peripheral blood) cultured for 1-3

weeks with cytokines in standard 2-
dimensional tissue culture conditions.

We now report that DC generation
and maturation can also be achieved

within the 3D environment of the

NASA bioreactors (including the

HARV, STLV and RCCS-D vessels).

These DC were identified primarily by

their characteristic morphology

(numerous elongated cytoplasmic

processes; Fig. 1), but also by their

Fig 1. Morphology of DC generated from CD34 progenitors in the NASA bioreactor.

Note the thinly veiled cell with long, branched processes in the center of the left panel

and the elongated cell spanning the right panel.
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lack of lineage (lin) -associated surface markers, high expression of

HLA-DR Class II molecules, and high allostimulatory activity in a _

mixed lymphocyte reaction - the latter function is considered a _

hallmark of DC (Fig. 2).

However, several intriguing differences were observed when _

the DC generated in the bioreactors were compared to those generated _

Fig. 2 Superior allostimulatory activity of DC generated in the NASA bioreactor. DC

generated in standard 2D and 3D bioreactor (bio) cultures were tested for the ability to

stimulate an allogeneic mixed lymphocyte reaction (1:40 DC:lymphocyte ratio). Both DC

populations were substantially more efficient stimulators compared to unseparated

mononuclear cells (MNC), even when the latter were tested at a ratio as high as 1:1.

Unstim = responder cells cultured without stimulators.
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Fig. 3 Proliferative and phagocytic activity of DC

generated in 2D cultures and 3D bioreactors (Bio). Left

panel: expansion index = no. cells after 10 days of

culture + no. cells at start of culture. Right panel:

percentage of DC ingesting Aspergillus conidia.

Representative experiments are shown.

in 2D: first, while cells proliferated in both conditions, the

overall cell expansion in the 3D bioreactors within a 10-21

day period was only 25-50% of that achieved in 2D (Fig. 3,

left panel); second, DC generated in the bioreactor displayed a

reduced ability to phagocytose Aspergillus conidia (Fig. 3,

right panel); third, despite these deficiencies in antigen uptake

and proliferation, DC generated in 3D bioreactors often

displayed higher allostimulatory activity (Fig. 2); fourth, cells

from 3D cultures displayed higher levels of heat shock

proteins (Hsp) (Fig. 4). While Hsp are upregulated by various

stressors, as molecular chaperones they are involved in many

processes in unstressed cells, including proliferation, antigen

presentation, etc. Upregulation of Hsp in DC may reflect
alterations in cellular functions.

According to current models, DC maturation progresses from a less mature stage characterized by

high antigen uptake/processing capabilities and low antigen-presenting function, to a more mature stage in

which antigen uptake/processing capabilities are lost as antigen-

presenting functions are enhanced. If this model is correct, our data _ _
would suggest that the DC generated in the bioreactors may be more _ _ c_

mature than those from 2D cultures. As discussed below, this

observation is important in light of the general opinion that terminally HspZ7

differentiated DC will be more suitable for therapeutic purposes.

Fig. 4 Upregulation of heat shock

proteins in DC generated in the NASA

bioreactor (Bio). Hsp27 was detected in

lysates of DC and HeLa cells (positive

control) using standard Westem blotting

techniques.

Comparison of DC of normal donors and immunocompromised cancer

patients (Appendices 1 and 2). Patients recovering from stem cell

transplantation are immunocompromised and thus at high risk of

infection. We hypothesized that a deficiency in DC might be an

underlying cause of the lymphopenia experienced by these patients, since antigen presenting cells are

required for the optimum activation and proliferation of T lymphocytes. Because DC are present in only

trace amounts in blood, it is not possible to purify these cells from severely lymphopenic individuals.

Therefore, we devised a method to detect DC directly within peripheral blood mononuclear cell (PBMC)

samples - a technique that required only small samples of blood and minimal manipulation (i.e. Ficoll-

hypaque separation).

First, we used multidimensional flow cytometry to show that magnetically sorted DC isolated from

blood of normal donors displayed a morphology, size profile, surface phenotype and functional properties

of typical DC described previously by other investigators, i.e. these DC displayed high forward light

scatter (Appendix 1); expressed CD4, HLA-DR (MHC-Class II), CD86 (costimulatory molecules), and

CD54 (adhesion/costimulatory molecules) surface structures, but lacked the lin markers of T cells, NK

cells, B cells, macrophages or granulocytes (Fig. 5 and Table 1). These lin'DR ÷ cells also displayed high

allostimulatory activity (Fig. 6), and showed the typical morphology of DC after culture with GM-CSF

and TNFc_ (Fig. 7). Next, we used a cocktail of antibodies directed against the lin antigens (first color)

and anti-HLA-DR (second color), to establish that lin-DR + DC-like cells could be detected directly in

unseparated PBMC samples (Fig. 8). When analyzed by 3-color flow cytometry, these lin-DR ÷ DC, like

the sorted DC, coexpressed CD4, CD86 and CD54 surface antigens (Table 1). Using this technique, we

then analyzed PBMC from breast cancer patients (all undergoing some form of chemotherapy) and

patients who were 2-6 months post stem cell transplantation. Fig. 9 indicates that the number of

circulating DC detected in both groups of patients was significantly lower than that of normal donors.
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Fig. 5 Enrichment of lineage negative HLA-DR ÷ (lin'DR ÷) leukocytes

by immunomagnetic sorting. Unsorted PBMC (Panels A) and cells

sorted using a DC isolation kit (Panels B) were analyzed by flow

cytometry. DC-like cells were characterized as the iin'DR ÷ events in

quadrant 4. The lineage cocktail consisted of PE-conjugated mAbs

recognizing TCRct[3, TCRyS, CD19,CD56 and CDI4 antigens.
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Fig. 6 Allostimulatory activity of immuno-

magnetically sorted linDR * cells.

Table 1. 3-Color flow cytometric analysis of lin-DR* leukocytes in

unsorted and immunoma_netically sorted peripheral blood specimens.

Expt. Percent of lin-DR+ cells coexpressing the particular
antigen

No. CD4 CD54 CD86 CD80 CD ! a

Fig. 7. Morphology of immuno-

magnetically sorted linDR ÷ leukocytes.

PBMC-I 94.6 98.1 93.2 5.3 6.0

2 87.2 93.6 86.5 0.6 0.3

3 92.2 97.4 99.3 1.6 1.3

Sorted ! 92.2 99.3 1.6 2.0

2 99.3 87.5 4.5

3 98.8 86.5 3.2 6.7

Lin-DR+ cells in unsorted PBMC or immunomagnetically sorted

populations were analyzed for coexpression of several other surface

markers using 3-color flow cytometric analysis. Sorted cells were

positively selected for CD4 expression and not reanalyzed for this

antigen..
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Fig 8 Flow cytometric analysis of lin'DR ÷ leukocytes

within PBMC preparations. Panel A: PBMC were

labeled with a cocktail of PE-conjugated mAbs

recognizing CD3, CDI9, CD20, CDI6, CD56, CDllb

and CDI4, and FITC-conjugated anti-HLA-DR mAbs.

Panel B: The same population was labeled with a

cocktail of FITC-conjugated lineage mAbs and TRI-anti-

HLA-DR. The boxed lin'DR* events in quadrant 4 were

further analyzed for coexpression of a third marker

(results shown in Table !).
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Fig. 9 Frequency of lin'DR ÷ cells in PBMC of
normal donors and cancer patients. Patients

included 7 breast cancer patients who received

prior chemotherapy (chemo) and 5 patients

who had received stem cell transplants

(chemo+SC) 2-6 months prior to testing.

Horizontal lines represent the mean.
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A similar analysis was performed on peripheral blood and ascites fluid samples of ovarian cancer

patients (see manuscript, Appendix 2). In these patients also, the frequency of circulating DC-like linDR ÷

cells in blood was reduced compared to normal donors (0.4 + 0.3% versus 0.9 + 0.3%, respectively;

p<0.02) Interestingly though, a higher proportion of linDR ÷ cells was detected within the ascites fluid

compared to blood samples from the same patients (4.5 + 5.7% versus 0.5 + 0.4%, respectively; p<0.05).

However, the ascites-derived DC expressed a the lower density of HLA-DR molecules compared to DC in

peripheral blood, suggesting that they might have been negatively affected by factors associated with the

tumor environment. All of these studies point to the potential usefulness of multidimensional flow

cytometry for evaluation of DC in various tissue compartments.

Analysis of murine DC generated in the NASA bioreactor. Our studies of murine DC are still underway,

but indicate that these cells can also be cultivated from unseparated bone marrow cell suspensions in the

RCCS-D. In fact, a higher proportion of NLDC-145 + cells (a

surface marker expressed by murine DC) has been detected

in 3D bioreactor cultures compared to standard 2D

conditions (Table 2). Somewhat in contrast to the human

studies, we have observed a higher proliferation of murine

cells within the bioreactor compared to standard 2D cultures.

Future studies will compare the ability of 2D and bioreactor-

generated DC to protect mice from infection with

Aspergillus or Candida.

Table 2. Generation ofmurine DC in the
NASA bioreactor

Expt. % NLDC-145 ÷ cells
No. 2D Cultures 3D Bioreactor

l 3 18

2 9 24

Significance. DC are considered to be the most potent of antigen presenting cells. Only recently though,

has it been possible to expand this rare leukocyte subset in vitro in cytokine-supplemented cultures. To

our knowledge, our studies are the first of their kind to generate and cultivate DC in a 3D environment.

One of our long-term goals is to generate sufficient numbers of fully differentiated DC for in vivo

supplementation/restoration of patients who we now show have low numbers of circulating DC. These

DC could be pulsed in vitro with antigen and then infused to stimulate naive or resting T lymphocytes

(DC-assisted vaccination). Alternatively, T cells could be collected, exposed to antigen-pulsed DC in

vitro, and then reinfused.

Despite several advances in the field of DC and the intense interest that has been focused on

cultivating these cells, there are several issues that still must be addressed before DC gain widespread

clinical application. One particular obstacle has been the inability to define the conditions/stimuli that

promote the terminal, irreversible, differentiation of DC. Unless this stage of maturation is achieved, DC

might lose their function or revert to a less differentiated state after in vivo instillation. This could not

only diminish the effectiveness of treatment, but could also induce T cell anergy if critical costimulatory

molecules are downregulated. Our observations, that DC generated in the bioreactor may be more

differentiated than those obtained in standard 2D cultures is therefore important, because if stable

differentiation can be achieved, this may represent a novel approach for generating DC for therapeutic

purposes.

While early emphasis was placed on defining conditions for generating massive numbers of DC, it

is becoming increasing evident that it is the quality rather than the quantity of DC which will ultimately

determine their therapeutic effectiveness. Therefore, the decreased cell expansion observed in bioreactor-

grown DC is not likely to be problematic. Importantly, this system will provide us with the opportunity to

analyze in depth the cellular and molecular events associated with DC maturation from its earliest

progenitor to terminal differentiation, as this entire process appears to be accomplished in the bioreactor.

This information will be important to understanding the mechanism of DC dysregulation in cancer

patients, and may be applicable also to understanding changes in DC that might contribute to the blunting

of immunity associated with spaceflight.

4



Principal Investigator: Cherylyn A. Savary, Ph.D.

Our findings that circulating DC are significantly reduced in patients with gynecologic cancers,

and in individuals recovering from stem cell transplantation are novel. Future studies are planned to
determine whether this effect is related to the disease-state or to the chemotherapy. The functional

capabilities of the small numbers of DC-like cells detected in these patients remains to be determined, but

the lower levels of DC might contribute to the inability of patients to mount an effective anticancer

response and could explain the increased susceptibility of these patients to opportunistic infections. As

discussed above, bioreactor-grown DC might eventually be used to correct these deficiencies.

Furthermore, our observations suggest that the multidimensional flow cytometric technique described here

could be used to monitor DC recovery after transplantation and to evaluate the effect of various treatment

regimens or environmental conditions on DC frequency or maturation. Such a tool might also aid in

identifying therapies that spare or boost immunity. In fact, DC testing might become routine in any

comprehensive immunological evaluation of patients and space travelers.

Our finding of increased Hsp in cells cultured in the bioreactor is intriguing. Upregulation of these

stress proteins might reflect a protective response of DC against as yet undefined stressors, some of which

might resemble those experienced in microgravity. Since Hsp have been shown to be involved in antigen

presentation, changes in Hsp expression could also cause the altered function of DC cultured in the

bioreactor. Understanding the role of Hsp in DC maturation might provide new insight into the molecular

pathways that may be disturbed in disease or in space. We have received funding to explore this new

avenue of research, that represents a spin-off of the present studies, through NRA-96-OLMSA-03.

Future Studies: Many of the above described studies are continuing in Round 2. We are presently

evaluating DC in patients undergoing cytokine therapy to determine if DC number and function are

altered, and how this might relate to the clinical response. We are also conducting an in depth analysis of

the maturational status of DC grown in the bioreactor as reflected by changes in particular cell surface

markers known to be differentially expressed by less mature versus more mature DC, and by functional

tests. We will also study the in vivo effectiveness of DC generated in the bioreactor to protect against

fungal infections in a murine model.

Manuscripts submitted:
Savary CA, Grazziutti ML, Melichar B, Przepiorka D, Freedman RS, Cowart RE, Cohen DM, Anaissie EJ, Woodside DG,

Mclntyre BW, Pierson DL, Pellis NIL Rex JH. Multidimensional flow cytometric analysis of dendritic cells in peripheral blood
of normal donors and cancer patients. Cancer Immunol. lmmunother. (submitted).

Melichar B, Savary CA, Kudelka AP, Verschraegen C, Kavanagh JJ, Edwards CL, Platsoucas CD, Freedman RS. Lineage

negative HLA-DR+ cells with the phenotype of undifferentiated dendritic cells in patients with carcinoma of the abdomen and

pelvis. Cellular Immunol. (submitted).

Funding resulting from these studies:
NRA-96-OLMSA-03 "Use of NASA Bioreactors in a Novel Scheme for Immunization Against Cancer"

PI: C.A. Savary, Ph.D.; FY 1997 to FY 2000; $465,000

Other activities/accomplishments during Round 1:
Feb. 1997 - presented results of the present studies at the annual meeting of the Biotechnology Cell Science Program

Investigators Working Group.

Student involvement in these studies -

Monica Grazziutti, M.D., Clinical Fellow

Luis Tome, M.D., Clinical Fellow

Alysson Ford, summer student, King Foundation Summer Research Program

Lee Aleksich, summer student, NASA Sharp Plus/Qem Program

Manu Goyal, summer student; NASA Sharp Plus/Qem Program
abstract of project accepted for presentation at the AJAS/AAAS conference (Appendix 3)
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Abstract We studied the potential of multidimensional flow cytometry in evaluation of the

frequency and maturation/activation status of dendritic cells (DC) in minimally manipulated

peripheral blood mononuclear cell preparations (i.e., Ficoll-Hypaque separated only) of normal

donors and cancer patients. A rare subset of HLA-DR + leukocytes (<1% of mononuclear cells)

was detected in blood of normal donors that displayed all the features of DC: these cells had high

forward light scatter characteristics and coexpressed CD4, CD86 and CD54 surface antigens, but

lacked the lineage-associated surface markers of T cells, B cells, monocytes, granulocytes or NK

cells (i.e. they were CD3", CD19", CD20", CD14", CD1 lb', CD16", CD56"). These physical and

phenotypic properties were virtually identical to those of immunomagnetically sorted leukocytes

characterized as DC on the basis of morphology, phenotype and high stimulatory activity in

allogeneic mixed lymphocyte cultures. Using this flow cytometric approach we observed that the

frequency of DC-like cells in peripheral blood mononuclear cell specimens of cancer patients

receiving chemotherapy alone or those recovering from stem cell transplantation was significantly

lower than that of normal individuals (mean + SE: 0.36 + 0.05%, 0.14 + 0.06%, and 0.75 +

0.04%, respectively). Multidimensional flow cytometric analysis of DC might represent an

important new tool for assessing immunocompetency, and for monitoring the effects of

therapeutic regimens on the immune system.

Key words Dendritic cells • Flow cytometry • Stem cell transplantation • Breast cancer
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Introduction

Dendritic cells (DCs) are a subset of bone marrow-derived leukocytes present in trace

amounts in virtually all tissues with the exception perhaps of brain [7]. Because they express

MHC Class I and Class II molecules and the costimulatory structures required for optimal

activation of naive and memory T lymphocytes, DCs have been considered to be the most efficient

of antigen-presenting cells (APC) [7]. The study of DCs has been difficult, though, because of

their very low numbers in peripheral blood and other tissues. Another difficulty has been the

failure thus far to identify any unique surface marker that could be used to directly enumerate,

isolate, and analyze human DCs. Furthermore, evidence suggests that the phenotype of DCs may

vary depending on the stage of maturation or activation, and tissue source. As a result, DCs are

usually identified (a) morphologically, by their numerous cytoplasmic processes [7], (b)

phenotypically, by their expression of HLA-DR and B7 costimulatory molecules, and lack of

surface markers associated with mature NK cells, B cells, T cells, macrophages/monocytes, or

granulocytes [2, 6], and (c) functionally, by their potent T cell-stimulatory activity [2, 7].

Much of our information on human peripheral blood DCs has come from analysis of DCs

that are highly-enriched through rigorous and multiple fractionation procedures [2, 7, 11]. Since

DC are estimated to represent <1% of mononuclear cells, such studies require a large amount of

peripheral blood. Thus investigations using enriched DC are impractical for many studies

involving patients, particularly those with leukopenia. Furthermore, the cell loss that occurs from

the multiple manipulations involved in DC enrichment may decrease the accuracy of the results.

Finally, DC isolation is too complex and time-consuming for routine analysis of patient samples.

Therefore, we investigated the feasibility of using multidimensional flow cytometry to analyze DC

directly in peripheral blood mononuclear cell (PBMC) samples obtained with only minimal

manipulation, i.e. Ficoll-Hypaque gradient separation. We show that the phenotype and light-

scatter properties of these cells are indistiguishable from DC isolated by immunomagnetic sorting.
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Finally,we showthe usefulnessof this techniquein evaluatingthe DC-like subsetin peripheral

bloodspecimensfrom cancerpatients.

Materials and methods

Preparation ofmononuclear cells

Peripheral blood from normal donors and cancer patients was obtained by venipuncture

and collected into heparinized vacutainer tubes. Patients included 7 with breast cancer who were

undergoing standard chemotherapy treatments and 6 individuals recovering from autologous or

allogeneic stem cell transplantation (1 with acute myelogenous leukemia, 1 with lymphoma, and 4

with breast cancer). In some studies buffy coat samples from normal donors were purchased from

a local blood bank. Blood specimens were diluted with 2 parts Ca++/Mg++-free phosphate

buffered saline (PBS), layered onto Accu-Prep gradient solution (density = 1.077 g/ml; Accurate

Chemical and Scientific Corp., Westbury, NY), and centrifuged at 750 x g for 20 min. The

PBMC were collected from the interface and washed 3 times in PBS.

Flow cytometry

Cell surface phenotype was examined by 2- and 3-color immunofluorescence using

monoclonal antibodies (mAbs) that were directly conjugated to fluorescein isothiocyanate (FITC),

R-phycoerythrin 0aE), or Tri-color ® (TRI). The specificity and source of these mAbs are listed in

Table 1. For 2-color flow cytometric detection of DC in PBMC preparations, 106 cells were

incubated for 20 min at 4°C with FITC-conjugated anti-HLA-DR, together with a cocktail of PE-

conjugated mAbs reactive against CD3, CD1 lb, CD14, CD16, CD19, CD20, and CD56. The

latter lineage (lin) cocktail was titrated to label simultaneously all NK cells, T cells, B cells,
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monocyte/macrophages, and granulocytes. Cells labeled with PE- and FITC- conjugated isotype

control mAbs that were nonreactive to human cells were used as a control. The labeled cells were

washed, fixed with 1% paraformaldehyde, and analyzed using a FACScan flow cytometer (Becton

Dickinson Immunocytometry Systems, San Jose, CA) equipped with a single 488 nm argon laser

and 3 fluorescence detectors with filter settings for FITC (530 nm), PE (585 nm) and TRI/PerCP

(>650 nm). A total of 30,000 to 50,000 events were collected in list mode and analyzed using

FACScan Research Software (Becton Dickinson). FSC and SSC gates were set to exclude

erythrocytes and debris, and markers set to exclude background fluorescence as established using

appropriate isotype controls. In these experiments DC were identified as lin'DR ÷ leukocytes with

high forward light scatter (FCS) properties.

For 3 color flow cytometric analysis of DC, 106 cells were labeled simultaneously with a

FITC-Iin cocktail, TRI-conjugated anti-HLA-D1L and a PE-conjugated mAb recognizing one of

the following cell surface determinants: CDla, CD4, CD54, CD80, or CD86. The cells were

washed and fixed with 1% paraformaldehyde. For flow cytometric analysis, a live gate was set on

the lin'DR ÷ DC population (i.e. FITC,TRI÷), and 1000-2000 gated events routinely collected.

This population was then analyzed for co-expression of a third marker identified as positive events

(above background fluorescence) within the PE-channel.

Immunomagnetic sorting of DCs

Highly-enriched preparations of DCs were obtained by immunomagnetic separation using

DC isolation kits obtained from Miltenyi Biotec, Inc., Auburn CA [4]. The isolation procedure

included a negative selection step to remove NK cells, T cells, and monocytes, followed by

positive selection of CD4 ÷ DCs. Briefly, PBMC were suspended in cold PBS supplemented with

2 mM EDTA and 0.5% bovine serum albumin (Fraction V, Sigma Chemical Co., St. Louis, MO)

at a concentration of 3 x 108 cells/ml. The cells were incubated for 10 min at 4°C with an FcR

blocking reagent and a cocktail of mAbs recognizing CD3, CD1 lb and CD16 antigens. The
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suspensionwas thenwashed,andincubatedfor an additional15min at 4°C with paramagnetic

microbeadsrecognizingthe mAb cocktail. This suspensionwaspassedthrougha type CS iron

fiber depletioncolumn placedwithin a strong magneticfield (SuperMACS,Miltenyi Biotec).

Effluent cells that were depletedof macrophages,granulocytes,NK cells and T cells were

collected,washed,incubatedfor 30 minat 4°C with anti-CD4microbeads,andpassedthrougha

typeMS iron beadseparationcolumnplacedwithin the magneticfield. After extensivewashing

the columnwasremovedfrom the magnetandthe CD4÷adherentcellsflushedfrom the column

with cold buffer. Thesecells were then passedthrough a secondpositiveselectioncolumnto

further purity the DCs. The purity of the sorted populationwas analyzedby labeling the

recoveredcellswith FITC-anti-HLA-DR,anda cocktail of PE-conjugatedmAbsdirectedagainst

CD19, TCRctl3,TCRyS,CD56, and CD14 (to detectany residualNK cells,T cells,B cells, or

monocytes).

Cultureof DC

In some experiments, immunomagnetically sorted DCs were suspended in KPMI 1640

medium (10 s ceils/ml) supplemented with 10% heat-inactivated fetal bovine serum (GibcoBRL,

Grand Island, NY), 10 mM HEPES buffer, 100 _g/ml streptomycin, 100 U/ml penicillin, 50 I.tg/ml

gentamicin, 2 mM glutamine, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 2 x 10 -5

M 2-mercaptoethanol (2ME), 50 ng/ml human recombinant GM-CSF (R&D Systems,

Minneapolis, MN), and 10 ng/ml highly purified human recombinant TNFo_ from E. coli (Cetus

Corp., Emeryville, CA) [10]. The cells were cultured for 5 days at 37°C in a 5% CO2 humidified

atmosphere.
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Allogeneic mixed lymphocyte response (MLR)

The MLR was performed as described previously [13]. DC stimulator cells were

suspended in RPMI 1640 medium supplemented with 10% heat-inactivated human AB serum (Pel

Freez, Brown Deer, WI), HEPES buffer, antibiotics, nonessential amino acids, sodium pyruvate,

glutamine and 2ME as described above, and irradiated with 3000 cGy delivered from a cesium

source. Serial dilutions of the DC were prepared in triplicate in 96 well round-bottomed plates

(0.1 ml/well) and an equal volume of medium containing 1.5 x 10 _ allogeneic nylon wool

nonadherent T lymphocytes was added to each well (stimulator:responder ratios ranged from

0.01:1 to 1:1). Controls included DC and T cells incubated alone. The plates were cultured for a

total of 5 days, with 1 laCi of 3H-thymidine (3HTdR; NEN-DuPont, Boston, MA) added during

the final 16 hr of culture. Cells were harvested onto glass fiber filters, and the radioactivity

measured by 13-scintillation counting. The results are expressed as counts per minute (cpm).

Digital imaging

Images of cells in cultures were captured as described previously [8] using a VI-470 CCD

video camera system (Optronics Engineering, Goleta, CA) attached to a Nikon DIAPHOT-TMD

inverted microscope (Nikon Inc., Melville, NY) that was equipped with 10x or 20x objectives.

The images were digitized using a QuickCapture frame grabber board (Data Translation Inc.,

Marlboro, MA).

Data analysis

Data were analyzed using a Students t-test analysis.

when p<0.05.

Results were considered significant
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Results

Phenotype of DCs isolated from peripheral blood of normal donors

Freshly isolated peripheral blood DCs are known to be of low buoyant density (<1.077

g,/ml) and lack surface markers expressed by T cells, B cells, NK cells, monocytes/macrophages,

or granulocytes, i.e. they are CD3"CD1 lb'CD14"CD19"CD16"CD20"CD56" [6, 7, 11]. However,

DCs express MHC Class II [7]. Another distinguishing characteristic of freshly isolated

peripheral blood DCs is the expression of CD4 surface molecules [1, 6]. A DC isolation kit

purchased from Miltenyi Biotec Inc. (Sunnyvale, CA) was used for immunomagnetic sorting of

DC from peripheral blood specimens based on the above mentioned characteristics. This isolation

was performed in 2 steps according to the manufacturer's recommendations: PBMC were first

depleted ofT cells, NK cells, and monocytes using a cocktail of mAbs recognizing CD3, CD16,

and CD1 lb, respectively (negative selection step), and then CD4 ÷ leukocytes were obtained by

positive selection [ 1, 2, 5]. Using this technique, we obtained highly-enriched populations of cells

(up to 95% purity) displaying a phenotype consistent with DC as analyzed by flow cytometry, i.e.,

TCRt_I3TCRy_'CD19"CD14"CD56-, but HLA-DR ÷ (Figs. 1A and 1B). When the light-scatter

property of these cells was examined, it was found that their size (as estimated by FSC) was

intermediate to that oflymphocytes and monocytes (Figs. 1C and 1D).

Morphology and function of sorted DCs

Immunomagnetically sorted lin'DR ÷ cells were placed into culture for 5 days with GM-

CSF and TNFtx, and then analyzed by light microscopy. As seen in Fig. 2, these cultures

contained cells with elongated processes typical of more mature DC. Furthermore, these cells

were potent stimulators of a primary allogeneic MLR, as evidenced by their ability to stimulate
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significant proliferation of allogeneic T lymphocytes at stimulator-to-responder ratios as low as

0.01:1 (Fig. 3).

Detection of DC-like cells among peripheral blood mononuclear cells

Based on the information obtained from the sorting experiments, we next determined if

multidimensional flow cytometry could be used to accurately detect linDR ÷ cells directly in

minimally manipulated PBMC preparations (i.e. cells obtained from blood specimens subjected to

Ficoll-Hypaque gradient separation only). PBMC from normal donors were labeled

simultaneously with a PE-cocktail of mAb recognizing the lin-associated markers CD3, CD1 lb,

CD14, CD16, CD19, CD20, and CD56 (first color), and FITC-conjugated anti-HLA-DR (second

color). Cells labeled with isotype control antibodies were included to determine background

fluorescence. Because of the low frequency of lin',DR ÷ cells, we routinely collected 30,000 to

50,000 events to more easily visualize and gate on this population.

As seen in the representative experiment shown in Fig. 4A, a very small subset of linDR*

leukocytes could be detected using this technique. This population represented 0.75 ± 0.04%

(mean ± SE; n=12) of PBMC from normal individuals. Similar levels of lin'DR ÷ cells were

observed using instead a cocktail of FITC-conjugated lineage-associated mAb and TRI-anti-HLA-

DR (Fig. 4B). By gating on the lin'DR ÷ events in quadrant 4 of the bivafiate plot and viewing the

FSC profile, we observed that this subset was intermediate in size to iymphocytes and monocytes,

a characteristic that was similar to the immunomagnetically sorted DC (compare Figs 1D and 4C).

Although these cells were rare, this detection technique was highly reproducible as seen by the

consistency of lin'DR ÷ cells detected in the same sample using the different mAb combinations, as

well by the relatively low variability among replicate samples from five other donors tested (Table

2).

To further characterize this lin-DR ÷ subset and to compare it more closely with

immunomagneticaUy sorted DC, we used 3-color flow cytometry to analyze the co-expression of

10
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surface molecules that have been associated with DC maturation/activation [6]. PBMC were

labeled simultaneously with a cocktail of FITC lin-associated mAbs, TRI-conjugated anti-HLA-

DR, and PE-conjugated mAb recognizing CD 1a, CD54, CD80, or CD86 surface antigens. A live

gate was set on the lin'DR ÷ cells as shown in Fig. 4B, and these cells analyzed for coexpression of

a third surface marker detected by a PE-conjugated mAb. An example of CD86 coexpression by

lin'DR + cells in a PBMC specimen is shown in Fig. 4D. Using this approach it was observed that

the phenotype of the majority of lin'DR ÷ cells was consistent with that described recently for DCs

freshly obtained from peripheral blood using other isolation techniques, i.e.

CD4+CD54+CD86÷CD80"CD 1a" (Table 3) [6]. Furthermore, this phenotype was similar to that of

the highly-enriched DC obtained by immunomagnetic cell sorting (Table 3).

As further support that the lin'DR ÷ cells detected in PBMC were comparable to sorted

DC, we spiked a sample of PBMC labeled with a PE-lin cocktail alone with purified FITC-DR ÷

DC obtained from the same individual. The sorted DC displayed the same fluorescence and size

characteristics as the DC-like cells gated within the whole PBMC population (data not shown).

Analysis of DC in PBMC of cancer patients

Having determined that the above described 2-color flow cytometric technique could be

used to confidently detect DC-like cells in peripheral blood of normal donors, we applied the same

approach to determine the levels of DC in cancer patients. As seen in Fig. 5, the proportion oflin"

DR + leukocytes in PBMC specimens of breast cancer patients who had undergone prior

chemotherapy was only 0.36+ 0.05% (mean + SE) which was significantly less than that of normal

individuals (p<0.0005). With the exception of patient #3, the majority of lin-DR ÷ eeUs detected in

these patients, like those of normal donors, coexpressed CD4 and CD54 (Table 4). Also with one

exception (patient #2) few or none of the lin'DR ÷ cells detected in PBMC of these patients

coexpressed CD1 a or CD80.

11
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Even lower levels of lin'DR÷ leukocytes were detected in PBMC samples of cancer

patients recovering from stem cell transplantation (Fig. 5). The frequency of DC-like cells in

these patients who were I-5 months post stem cell transplantation was only 0.14 + 0.06% (mean

+ SE), and was significantly reduced compared to both normal donors and non-transplanted

cancer patients (p<0.0005 and <0.025, respectively). In fact, lin'DR ÷ cells were undetectable in

one transplanted patient.

Discussion

We have evaluated the feasibility of using a simple 2-color flow cytometric technique to

detect DC-like cells in mononuclear cell preparations of peripheral blood of normal donors and

cancer patients. These cells represented approximately 1% or less of the PBMC fraction, a

frequency that is in agreement to that estimated for DC analyzed in a variety of other types of

assay conditions [6, 7, 11 ]. Furthermore, they expressed a phenotype and size that was virtually

identical to that of immunomagnetically sorted DCs, as well as to freshly isolated peripheral blood

DC described in previous reports [2]. However, because our approach allows for detection of

DCs directly in blood samples that have received only minimal manipulation (Ficoll-Hypaque), it

allows for a more rapid, and perhaps more accurate assessment of this important APC population

compared to other DC enrichment procedures. While other investigators have shown that DC-

like cells can be detected in PBMC populations [2], our study is the first to apply

multidimensional flow cytometry to begin to analyze in more depth the frequency and

maturation/activation status of these cells in blood specimens of cancer patients, including those

who are judged as immunodeficient by other criteria (e.g. low numbers of circulating CD4 ÷ T

lymphocytes). Our data suggest that DC testing could become a part of the routine clinical

evaluation of immune competency.

12
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We haveshownfor the first time that while lin-DR+ leukocytes in PBMC specimens of

breast cancer patients who have received prior chemotherapy phenotypically resemble those

detected in normal PBMC (i.e. CD4+CD86+CD54*CD80"CDla'), this population is reduced by

approximately 50% in the patients. Studies are planned to determine whether this effect is related

to the disease-state or to the chemotherapy. The functional capabilities of the small numbers of

DC-like cells detected in these patients remains to be determined, but it was recently reported that

DC antigen presentation is compromised in cancer patients [3]. In any case, the lower levels of

APCs might contribute to the inability of patients to mount an effective anticancer response.

Similarly, the low levels of lin'I)R ÷ DC-like cells in stem cell transplanted patients could contribute

to the increased susceptibility of these patients to opportunistic infections. Our observations

suggest that the multidimensional flow cytometric technique described here could be used to

monitor DC recovery after transplantation and to evaluate the effect of various treatment

regimens or environmental conditions on DC frequency or maturation. Such a tool might also aid

in identifying therapies that spare or boost immunity.

We found that the 2-color flow analysis of DC could be performed with o_y 2 x 10 6

PBMC, a number of cells that was easily obtained from normal donors, but more importantly, also

from immunocompromised patients who often have low leukocyte counts. Additional cells were

required for the more extensive 3-color analyses. However, as the technology for multicolor

analysis is improving and expanding, it should be possible to simultaneously analyze DC within a

single sample for co-expression of multiple surface and cytoplasmic markers.

Analysis of human DC will also be significantly facilitated if mAb specific for these

populations can be identified. Recently it was shown that some subsets of human peripheral blood

DC express CD83 [11-13]. This surface antigen is not specific for DC, and may not detect less

mature DC subsets [ 13]. However, the availability of antibodies to CD83 has been instrumental in

analyzing cytokine- and chemokine-gene expression in peripheral blood DC, and discrimination of

DC subsets that are susceptible to HIV infection [ 11-13]. Studies to analyze CD83 expression by

the DC detected within PBMC populations are currently in progress.

13
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Until more direct analysis of DC is possible, the exact composition of the lin-DR ÷

population, and the proportion of cells within this subset that are truly DC-committed cannot be

precisely determined. It is possible, for example, that this population may contain DR + progenitor

cells that are not yet committed to a specific lineage [9]. Whether such cells could be driven

towards the DC lineage, however, is an intriguing question with relevance perhaps for the

treatment of immunodeficient patients. Nevertheless, the co-expression of MHC Class II and

costimulatory molecules by the lin'DR ÷ cells detected using the multidimensional flow cytometric

technique described here indicate that they might possess potent antigen-presenting activity.
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Table 1. Monoclonal antibodies used for cell surface analysis of human dendritic cells

Surface

Antigen Distribution Source"

CD 1a DC; cortical thymocytes Caltag

CD3 T cells Caltag

CD4 DC; T-helper/inducer cells; monocytes/macrophages Caltag

CD1 lb Granulocytes; monocytes/macrophages; NK cells Caltag

CD 14 Monocytes/macrophages; some granulocytes Caltag

CD 16 NK cells; granulocytes; activated monocytes/macrophages B-D, Caltag

CD 19 B cells Caltag

CD20 B cells (except pre-B and plasma cells) Caltag

CD54 (ICAM-1) DC; endothelial cells; many activated cells Caltag

CD56 NK cells; T cell subset B-D;Coulter

HLA-DR DC; some B cells, T cells and monocytes Caltag/B-D

CD80 007.1) DC; activated B cells, T cells and monocytes Calbiochem

CD86 (B7.2) DC; activated B cells and monocytes Calbiochem

"Caltag, Burlingame, CA; Becton-Dickinson 00-D), Immunocytometry Systems, San Jose, CA;

Coulter Corp. Hialeah, FL; Calbiochem, San Diego, CA.
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Table 2 Detection of lin'DR ÷ leukocytes in PBMC of

normal donors

Donor Perce_Lin_R+Cells

No. Testl Te_2 Test3

1 1.0 1.1 1.0

2 0.9 0.9 0.9

3 0.7 0.7 -

4 1.1 0.9

5 0.5 0.5 -

Lin'DR + cells

cytometry.

in PBMC were detected by 2-color flow
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Table 3 3-Color flow cytometric analysis oflin-DR ÷leukocytes in unsorted and

immunomagnetically sorted peripheral blood specimens.

Expt. Percent of lin-DR ÷cells coexpressing the particular antigen

No. CD4 CD54 CD86 CD80 CD 1a

PBMC-1 94.6 98.1 93.2 5.3 6.0

2 87.2 93.6 88.4 0.6 0.3

3 88.2 93.8 93.1 6.0 -

4 92.2 97.4 99.3 1.6 1.3

Sorted 1 98.9 79.4 1.4 -

2 97.6 91.4 2.2 4.9

3 98.8 86.5 3.2 6.7

LinDR + cells in unsorted PBMC or immunomagnetically sorted populations were

analyzed for coexpression of several other surface markers using 3-color flow

cytometric analysis. The sorted cells had been positively selected using an anti-

CD4 mAb and were not reanalyzed for expression of this antigen.
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Table 4 Phenotype of lin'DR + leukocytes of breast

cancer patients

Patient % ofLin'DR ÷ cells coexpressing:

No. CD4 CD54 CD86 CD80 CDla

1 83 92 4 1 3

2 87 99 91 30 n.t.

3 43 7 55 0 0

4 68 51 22 0 0

5 65 55 11 5 0

6 85 97 98 0 n.t

7 54 67 77 0 0

PBMC were analyzed by 3-color flow cytometry as

described in the legend of Fig. 4.
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Fig. 1 Enrichment of lin'DR ÷ leukocytes by immunomagnetic cell sorting. Unsorted PBMC

(Panels A and C) from a normal donor and cells sorted using a DC isolation kit as described in the

Materials and Methods section (Panels B and D) were analyzed by flow cytometry. Markers were

set using PE- and FITC-conjugated isotype control antibodies to exclude >98% of background

events. DC-like cells were characterized as the lin'DR ÷ events in quadrant 4 of the FITC vs PE

dot plots in Panels A and B. The lineage cocktail consisted of PE-conjugated mAbs recognizing

TCRoq3, TCRyS, CD19,CD56 and CD14 antigens. The light-scatter characteristics of the

leukocyte populations are shown in panels C and D. The two major leukocyte populations, i.e.

lymphocytes (L) and monocyte/macrophages (M) are labeled in Panel C. The experiment shown

is a representative experiment from 3 sorts of PBMC from normal donors.
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Fig. 2. Morphology of immunomagnetically sorted lin-DR ÷ leukocytes. Lin-DR ÷ leukocytes from

PBMC of a normal donor were sorted as described in Fig. 1 and cultured for 5 days with

GM-CSF and TNFo_. Note cells with elongated cytoplasmic processes typical of DC (arrow).
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Fig. 3 Allostimulatory activity of immunomagnetically sorted lin'DR + cells. Unsorted PBMC and

immunomagnetically sorted linDR ÷ leukocytes were tested for the ability to stimulate allogeneic

lymphocytes in a standard mixed leukocyte reaction. Bars represent mean +SE of replicate

samples. Proliferation of responder cells was evaluated by 3HTdR uptake measured after 5 days

of culture.
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Fig 4 Flow cytometric analysis of lin-DR ÷ leukocytes within PBMC preparations. Panel A:

PBMC of normal donors were labeled with a cocktail of PE-conjugated mAbs recognizing CD3,

CD19, CD20, CD16, CD56, CDllb and CD14, and FITC-conjugated anti-HLA-DR mAbs.

Panel B: The same PBMC population was labeled with a cocktail of FITC-conjugated mAbs

recognizing the lin-associated antigens listed above and TRI-anti-HLA-DR mAbs. Panel C:

Forward light-scatter (size) characteristics of the unseparated PBMC (oo..) and lin'DR ÷ cells

contained within the rectangular gate shown in quadrant 4 of the TRI versus FITC dot plot in

Panel B (_). Panel D: PBMC were labeled simultaneously with FITC-Iin cocktail, TRI-anti-

HLA-DR and PE-anti-CD86, or with the same FITC and TRI labeled antibodies and a PE-

conjugated isotype control antibody. The histograms represent the proportion of lin'DR ÷ cells in

the live gate ofFITC',TRI ÷ events that react with the isotype control ( .... ) or anti-CD86 (_)

mAbs.
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Fig. 5 Frequency of lin-DR + cells in PBMC of normal donors and cancer patients. The

percentage of lin'DR ÷ leukocytes was determined by 2-color flow cytometry as described in the

legend of Fig. 4. Patients included 7 breast cancer patients who received prior chemotherapy

(chemo) and 6 patients who had received stem cell transplants (chemo+SC) 1-5 months prior to

testing. Horizontal lines represent the mean.
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ABSTRACT

The characteristics of antigen-presenting cells in carcinomas that involve

the abdominopelvic cavity are unknown. Dendritic cells, a population of

antigen presenting cells have been identified as lineage-negative HI.A-DR*

leukocyte ceils by two-color flow cytometry. We used this criterion to study the

putative dendritic cells in ascltes from 25 patients with peritoneal

carcinomatosis. The mean proportion 4- standard deviation of llneage-negatlve

HLA-DR" cells in ascites were 3. I ± 4.6% (range 0.05 - 17.3%). Most lineage-

negative HLA-DR" ceils expressed CD45RA or CD4 antigens. Dendritic ceils

had low proportions of CD80, CD1 lc, CD45RO and CD58, suggesting that they

were of low maturity. The proportion of lineage-negative HI.A-DR" cells in

ascites was significantly higher compared with the proportion in peripheral

blood from the same patients (4.5 4- 5.7 V 0.5 4- 0.4: P < 0.05). The proportion

of lineage-negative HI.A-DR" ceils that coexpressed CD86 or CD58 was lower in

ascites (56 4- 19 %) than in peripheral blood (91 4- 10°/o, P < 0.05), whereas a

higher proportion of lineage-negative HLA-DR" cells in ascites exp_ CD4.

Relative fluorescence intensity of HI.A-DR was also lower in dendritic cells

from ascites and blood from patients with carcinomatosis than it was in blood

from normal donors. As an indicator of macrophage activation, the

concentration of neopterin in ascitic fluid correlated negatively with the

numbers of lineage-negative HLA-DR" cells in ascites (rs=-0.44, P < 0.05), and

lineage-negative HLA-DR" CD4* ceils (rs=-0.63, P < 0.005), and correlated

positively with the number of lineage-negative HLA-DR ° CD80" cells (rs=0.43, P

< 0.05). The proportion of lineage-negative HI_A-DR" cells also correlated

positively with the concentration of Interleukin-10 in ascitic fluid (rs=0.40, P =
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0.05). These findings suggest that certain factors associated with the tumor

rnlcroenvironment might influence the number of these dendritic ceils and

their expression of function-associated markers.

INTRODUCTION

Ovarian and other M&llerian carcinomas are the most frequent cause of

peritoneal carclnomatosis, although other cancers, including those that

originate in the gastrointestinal tract may spread to involve the serosal and

peritoneal surfaces of the abdominopelvlc cavity. Platinum-based

chemotherapy and, more recently, taxanes have proven useful in the treatment

of tumors of MQUerian origin. Most patients, however, will ultimately die of

cancer-related complications. Tumors that originate in the gastrointestinal

tract are generally less responsive to chemotherapeutic agents.

A number of clinical trials have been conducted on biotherapeutic agents

administered intraperitoneaUy. These studies have utilized recombinant

cytoklnessuch as interferon-a (IFN-a) (Willemse et al., 1990), interferon-7 (IFN-

_) (PuJade-Lauraine et aL, 1996), and interleukin-2 (IL-2) alone (Freedman et

a/., 1997), or with lymphokine activated killer cells (Steis et a/., 1990) or tumor-

infiltrating lymphocytes IT[I.s) (Freedman et a/., 1994). Intraperitoneal

treatments with some of these agents has produced complete responses,

especially in patients who have a minimum of residual disease after prior

chemotherapy. The outcome of intraperitoneal Immunotherapy strategies in

ovarian and other peritoneal carcinomas might possibly be improved when a
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better understanding is acquired of the antigen-presenting cells associated with

these tumors.

Tumor antigen peptides presented within the major

histocompatibility complex (M:HC} class I or II are specifically recognized by the

T-cell receptor {Marrack and Kappler, 1987). The binding of the T-cell receptors

to particular pepUde MHC complexes produces a signal for T-cell activation.

This first signal is transferred to structures within the cell by the monomorphic

CO3 proteins that are in covalent association with the T-cell receptors. In

addition, a need for a second signal has been established (Geppert et o2., 1990).

This signal could be mediated by accessory molecules, such as the intracellular

adhesion molecule-1 and its ligand (CD54) or late -function antlgen-3 (CD58)

(Geppert et aL, 1990; Singer, 1990). A most important, and probably

indispensable signal involves the ligation of CD28 on lymphocytes by

costlmulatory molecules B7.1 (COS0) or B7.2 (CD86) on antigen-presenting

ceils or target cells (june et oL, 1994; Linsley and Ledbetter, 1993). The

expression of both MHC and accessory molecules on tumor cells varies

significantly (Hersey eta/., 1994; V_mky et aL, 1996). Moreover, we have found

that (I) the presence of large numbers of CD3 ÷, CO4 ÷, and CD8 ÷ infiltrating

lymphocytes in solid tumor specimens from ovarian carcinomas in v/vo and (ii)

expansion of TIL-derived T-cell lines in v/tro correlate positively with the

expression of histocompatibility leukocyte class I antigens (HLAs) on these

tumor ceils (Kooi et aL. 1996}.



Melichar et al.

Page 5

CD80 or CD86 are usually absent on tumor cells (V_inky et aL, 1996). In

contrast, professional antigen-presentlng ceils constitutively express MHC

antigens as well as costirnulatory molecules. In fact. MHC class II antigens

and CD28 l/gands are constitutively expressed only on macrophages. B

lymphocytes and dendritic cells (Azuma et al., 1993; Lenschow et al.. 1996;

Young et al., 1992). Dendritic cells are considered to be as effective as, or

perhaps superior, in their ant/gen-presentmg ability compared with either

macrophages or B lymphocytes (BetJes eta/., 1993; Thomas et a/., 1993).

Recently dendritic cells have been shown to influence the direction of an

immune response towards either active immunity or anergy (Ridge et al.. 1996).

Moreover. dendritic ceils in both animals and humans have been shown to be

involved in the control of tumor growth (Celluzzi et aL. 1996; Gabrilovich et aL,

1996a; Gabrilovich et aL, 199613; Hsu et al., 1996; Zitvogel et at.. 1996).

Dendritic ceils were originally defined on the basis of their morphologic

appearance, but the relationship of their precursors to the hemopoletic cell

precursors is not fully defined (Peters eta/., 1996: Steinman, 1991). Because

dendritic cells are present in small numbers and have no specific surface

markers, they are difficult to study tn s/ttL Recently dendritic cells were

characterized by the absence of lineage-specific markers for other leukocytes

and by their expression of HI, A-DR and. in most cases, CD4 antigens (Ferbas et

a/.. 1994; O'Doherty et at. 1994). In the present study we report: (i) the

frequency of lineage negative HLA-DR ÷ leukocytes in the malignant ascites and

peripheral blood of patients with ovarian and other carcinomas that involve

the abdominal cavity. (ii) the expression of costimulation molecules and
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certain other surface markers on these cells consistent wlth that of dendritic

cells, and (111) correlations among the characteristics of dendritic cells in

ascltes according to the levels of cytokines and neopterin in the peritoneal

cavity. These studies show for the first time the characteristics of dendritic

cells associated with ovarian and other abdominal carcinomas. Dendritic cells

may also be important in the therapeutic induction of active immunity.
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MATERIAL AND METHODS

Patients and norma/donors

Specimens of malignant ascttes were obtained during diagnostic and/or

therapeutic paracentesis from 25 patients (Patients 1-25 in Table I). These 25

patients included 20 patients who had epitheUal ovarian cancer and one each

who had granulosa cell ttunor, endometrial cancer, gastric cancer, colon cancer

and adenocarclnoma of unknown origin. Peritoneal washings were obtained

during abdominal surgery from 6 additional patients, including 4 who had

epithelial ovarian cancer, and 2 who had endometrlal cancer (Patients 26-31 in

Table I). Specimens of the peripheral blood were obtained from some of these

patients and from another 3 patients who had gynecologic malignancies

(Patients 32-34 in Table I). The mean age of the patients was 57 ± 12 years

(range 35- 80 years). Peripheral blood specimens were also obtained from 5

normal women donors, aged 35 :k 7 years.

Spectmenpreparatton

Fluid from ascites and peritoneal washings were collected into sterile

bottles and heparin was added. Peripheral blood was collected into heparinized

vacutainer tubes. All samples were processed within 2 hr of collection.

Peritoneal exudate ceils were sedimented from the ascites or washings by

centrifugation at 900 x g for I0 rain. The supematant of ascites was collected

for further analysis and stored at -70°C. The ceils were then resuspended in

calcium/magnesium-free phosphate buffered saline (PBS), layered over a

Histopaque 1077 density cushion (Sigma, St. Louis, MO) and centrifuged for 30
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min at 800 x g. The layer of mononuclear leukocytes was then collected, and

the ceils were counted in a hemacytometer and washed with PBS.

The peripheral blood specimens were diluted with I part of PBS, layered

over Histopaque 1077 and centrifuged at 800 x g for 30 min. Ai_er collection.

the mononuclear leukocytes were counted and then washed with PBS.

cytome 

Phenotyping for the cell-surface antigens was determined by two- and

three-color immunofluorescence using monoclonal antibodies directly

conjugated to fluorescein isothiocyanate (FITC), R-phycoerythrln (PE), or Tri-

color. Antibodies were obtained from Caltag (Burlingame, CA), Becton-

Dickinson (San Jose, CA), Calbiochem (La JoUa. CA), Olympus (Lake Success,

N-Y) and Biosource International (Camarillo, CA). The specificity and source of

these monoclonal antibodies are listed in Table II.

For two-color flow cytometric detection of lineage-negative HIA-DR" cells

in preparations of mononuclear leukocytes, I08 cells were incubated for 30 rain

at 4"C with FITC-conJugated anti-I-H2k-DR, with a coc.ktafl of PE-conJugated

monoclonal antibodies directed against the following leukocyte antigens: CO3,

CD11b. CD14. CD16, CD19. CO20. CD54, CD56 and CD58. The latter lineage

cocktail was tit.rated to label all natural killer cells, T- cells, B- cells,

monocyte/macrophages and granulocytes simultaneously. Cells labeled with

PE- and FITC-conJugated isotype control monoclonal antibodies that were

nonreactive to human cells served as controls. The labeled cells were washed

with PBS. fixed in I% paraformaldeV :el analyzed using a FACScan flow
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cytometer (Becton Dickinson Immunocytometry Systems, San Jose, CA)

equipped with a single 488-nm argon laser and 3 fluorescence detectors with

filter settings for FITC (530 nm), PE (585 run) and Tri-color (> 650 nm). A total

of 20,000 to 50,000 events were collected in list mode and analyzed using

FACScan Reseazch Soilware (Becton Dickinson).

For three-color flow cytometric analysis, 10 8 cells were labeled

simultaneously with a cocktail of FITC-conJugated llneage-speclfic antibodies,

Tri-color-conJugated anti-HLA-DR, and PE-conJugated monoclonal antibodies

that recognize other surface determinants. The cells were washed with PBS

and fixed with 1% paraformaldehyde. For flow cytometric analysis, a live gate

was set on the lineage-negative HLA-DR* cell population, and these cells were

then analyzed for coexpression of a third marker identified as positive events

(above background of isotype control) within the PE- channel. For some

antigens, the expression was evaluated by relative fluorescence intensity as the

fluorescence intensity of the antigen divided by the flourescence intensity of

the isotype control. Figure 1 is a representative plot that shows the detection

of a lineage-negative I-II_-DR _ cell population. Histograms in Figure 2 show

representative results for surface costimulatory and adhesion molecules and

activation markers.

Enzyme-/tnked/mmunoabsorbant assay

Specimens of ascites were centrifuged at 900 x g. Supematants were

stored at -80°C until testing could be done. Concentrations of interleukin-4
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(IL-4). Interleukin-10 (IL-10), tumor necrosis factor-a {TNF-a). granulocyte-

macrophage colony-stlmulatlng factor (GM-CSF) and IFN-7 were determined in

the ascitlc fluid using commercially available enzyme-linked immunoabsorbant

assay (ELISA) kits (BioSource International). The ELISA kit for neopterin was

supplied by IBL (Hamburg, Germany). Testing was performed according to the

manufacturer's instructions. The following standards were used as the lower

limits of detectabtllty:, for IL-4 and TNF-_x, 2 pg/ml, for Ile10, 6 pg/ml, for GM-

CSF 8 pg/ml, for IFN-7 4 pg/ml, and 1.35 nmol/1 for neopterlns.

smusta_z/ana_sts

Statistical significance of differences between unpaired observations was

studied using the Mann-Whitney U test. The Wflcoxon paired test using

StatView software (Abacus Concepts, Berkeley, CA was used for paired

observations.). Correlations were studied by the Spearman rank coefficient, and

correction for ties was performed with StatView software. Significance was

determined as P < 0.05.
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Lineage-negat/oe H/A-DR" ce//s in ma//gnant asc/tes and pertphera/ b/ood of

_Uients wtth mal_nanc_s of the abdo_pelv_c cavity

The" proportion of lineage-negative HLA-DR" mononuclear leukocytes in

malignant ascites are shown in Table III. The mean proportion of these cells ±

standard deviation was 3.1 4- 4.6% and ranged from 0.05 to 17.3%. The mean

number of llneage-negatlve I-ILA-DR* cells was 8.0 4- 9.5 x 10 e cells/L, (range

0.1-31.6 x 108 cells/L. A trend that favored higher numbers of lineage-negative

HLA-DR* ceils was observed in the malignant ascltes from patients without a

history of prior chemotherapy compared with the number seen in malignant

ascites from previously treated patients 11.3 4- 10.2 x 106 cells/L, (range 1.1-

27.0 x I0 e ceils/L)V 6.2 ± 9.2 x I06 cells/L, (range 0.1-31.6 x 108 cells/L), but

thls difference was not statistically significant. There was also no significant

difference in the proportion of lineage-negative HLA-DR ÷ cells in untreated and

treated patients (3.0 ± 2.8%, (range 0.3-7.7%) V 3.1 ± 5.2%, (range 0.05-17.3%),

respectively). In contrast to the findings in malignant ascites, lineage-negatlve

I-ILA-DR* cells were present in smaller proportions in peritoneal washings of 6

patients who had various abdominal cancers (0.15 + 0.1 V 3.1 + 4.6: P <

0.005).

Paired specimens of ascltes and peripheral blood were obtained from 7

patients. The proportions of lineage-negatlve HLA-DR" cells was significantly
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higher in the malignant ascltes than m the peripheral blood (4.5 + 5.7% V 0.5

± 0.4%: P < 0.05) (Fig. 3A).

Peripheral blood specimens of 17 patients who had abdominal cancer

(ascites in 8 patients and tumor without ascltes In 9 patients) contained 0.4 ±

0.3% of IIneage-negatlve HLA-DR" cells (Table IV). The proportion of lineage-

negative HLA-DR" cells in peripheral blood specimens from patients with

peritoneal or ovarlan malt_-ncles was slgnfficantly lower than the proportion

In peripheral blood specimens from normal donors (0.4+0.3% V 0.9+0.396, P <

0.02).

Cell surface differentWtion and acthaa_n markers on lineage-negatlve HIA-DIT

eells in ascltes and peripheral blood of _ with carcinomas of the

abdominopelvfi: cavity

Three-color flow cytometric analysis of lineage-negative HLA-DR" cells in

ascites revealed the following cell proportions: CD4": 92 ± 9% (range 63-100%)

and CD45RA÷: 94 ± 12% (range 54-100%) (Tables [] and IV, Fig. 3B). The

proportions of lineage-negative HLA-DR" cells that coexpressed CD4 antigen

was significantly higher in malignant ascites compared with peripheral blood

specimens obtained from the same patients (95 ± 4% V 63 ± 17%: P < 0.05.

(Fig. 3B}.

The proportions of lineage-negative HI.A-DR" cells in malignant ascites

that expressed the costimulatory molecules CD80 and CD86 varied among

specimens from individual patients {Table Ill). The mean proportion of lineage-
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negative HLA-DR" cells from ascites that coexpressed CD80 was 5 ± 14% (range

0-63%] (Table III), whereas the mean proportion in peripheral blood was 4 ± 8%

(range 0-12%) (Table IV). In I specimen of malignant ascites from 1 patient,

CD80 ÷ llneage-negatlve HLA-DR" cells were detected at a very high frequency,

63%. The mean proportion of lineage-negative I-ILA-DR" cells in ascites that

coexpressed CD86 was 47 + 30% (range 0-8896). The mean proportion of

llneage-negatlve HLA-DR" ceils in the peripheral blood that coexpressed CD86

was 82 ± 25% (range 4-10(O) When the proportions of CD86 ÷ llneage-negatlve

HLA-DR ÷ cells were compared In paired samples of ascites and peripheral blood

from the same patients, the frequency of CD86 + cells was significantly lower in

lineage-negative H/A-DR" ceils from ascites than peripheral blood (56 ± 19% V

91 ± 10%: P < 0.05) (Fig. 3c).

The mean proportion of ascitic lineage-negative HLA-DR" cells that also

expressed CD54 was 98 ± 2% (range 93-100%) (Table HI). In contrast,

coexpression of CD58 in peripheral blood specimens ranged from 1 to 48%

(mean 13 _ 14%), and the proportion of CD58 ° ceils was significantly lower on

llneage-negative HLA-DR" cells from ascites than those from peripheral blood in

6 paired specimens (I 1 ± 18% V68 ± 22%: P < 0.05 (Fig. 3d).

CD11c, which is a marker of maturation, was infrequently detected on

llneage-negative HLA-DR" cells from ascitic fluid (mean 4 ± 8%, range 0-34%)

(Table Ill). The proportion of lineage-negative HLA-DR" cells that also

expressed the CD45RO antigen correlated positively with lineage-negative HLA-
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DR" cells that expressed either CDI lc (rs = 0.763: P < 0.02, Fig. 4a), or CD80

(rs= 0.598, p< 0.05, Fig. 4b). The mean proportions of lineage-negatlve HIA-

DR* cells in ascites that were CD45RO ÷ appeared to be lower compared with

that in peripheral blood (7 + 12% V 19 ± 18%), whereas the proportion of

lineage-negatlve HLA-DR ° cells that were CD45RA ° appeared to be lower in

peripheral blood than in ascites (70 ± 13% V 94 ± 12%). but these results were

not statistically significant.

Because cells of the monocyte/macrophage lineage may represent a

population of antigen presenting ceils in the peritoneal cavity that is different

at the functional level from a population of dendritic ceils, we compared

certain maturation/activation-associated markers on CD14" macrophages and

lineage-negative HLA-DR" ceils. Figure 5 is an example from an analysis of one

specimen which shows macrophages from peritoneal fluid expressing higher

proportions of CD86, CD58 and CDI lc compared with the expressions seen on

lineage-negative HLA-DR" cells: CDI4" cells were mostly CD45RO'.

As shown in Figure 6, the relative fluorescence intensity of I-ILA-DR on

lineage-negative HLA-DR" cells Was significantly lower in peripheral blood (21.8

+ 13.6: P < 0.05) and ascites (15.0 ± 8.1: P < 0.01) of patients compared with

those seen in peripheral blood from normal donors (51.2 + 25.1).

Lineage-negative HLA-DIT cells and production of cytokines and neopterin in ascitic

jaa
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Because the number and function of dendritic cells may be influenced by

the cytoklne microenvironment (Buelens et al., 1995; Everson et al., 1996,

Mitra et al., 1995), we set out to determine whether the numbers of dendritic

cells correlated with (i) the ascitic fluid concentrations of certain cytokines

involved with T-ceU activation and (il) with neopterin concentration as an

indicator of macrophage activation. Detection of cytokines and neopterin was

performed by ELISA as described in the Materials and Methods. IL-4 was not

detected in specimens from 8 patients, and GM-CSF was detected in only 2 of 9

ascltes. IFN-7 and TNF-a were not detected in any of the specimens from 25

patients. In contrast, IL-10 was detected in most of the specimens examined.

The mean concentration of IL-10 was 71.4 + 82.5 pg/ml (range 0-287 pg/ml)

and the concentration of IL-10 detected correlated positively with the

proportions of lineage-negative I-ILA-DR" cells detected in ascites (rs = 0.40: P =

0.05, Fig. 7a}. Neopterln was detected in all but 1 of the ascites (mean 19.1 ±

17.5, range 0-76 nmol/l). The concentrations of neopterin correlated negatively

with the numbers of llneage-negative I-II_-DR" cells (rs =-0.44: P < 0.05, Fig.

7b), but correlated positively with the percentages of lineage-negative HI_-DR*

cells that coexpressed CO4 (rs = - 0.63: P < 0.005, Fig. 7c), or CO80 (rs = 0.43,

P < 0.05, Fig. 7d).

Discussion

Dendritic cells are antigen presenting cells that appear to have an

important role in the activation of specific immune responses /n v/vo (Ridge et

a/.. 1996; Steinman. 1991). Because specific markers for human dendritic cells
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have not been identified we utilized an alternative method that is based on

defining the dendritic ceU population by determining the absence of leukocyte-

lineage markers and positlvity for HLA-DR (Ferbas et al., 1994; O'Doherty et al.,

1993). The use of two-color flow cytometry in the present study enabled

quantitation of dendritic cells through the detection of lineage-negative HIA-

DR* cells. Malignant ascites will usually provide large numbers of cells that

can be recovered without extensive manipulations, e.g., enzymatic treatments

that might cause significant alterations in a minor cell population such as

dendritic cells (Abuzakouk eta/., 1996). Our study included patients who had

received prior chemotherapy and who had not. We attempted to determine

whether the variations in the numbers of lineage-negative HI.A-DR" cells in

ascites were related to prior chemotherapy. Significant differences could not be

detected in either the percentages or number of lineage-negative HI.A-DR" cells

from previously treated or untreated patients. A larger sample size may be

required to demonstrate differences between these two patient subgroups.

Dendritic cells may be detected at most anatomic sites (Steinman, 1991).

Using different methods of detection from that used here, 2% (Kubicka eta/.,

1985) to 6% (BetJes eta/., 1993) of peritoneal dendritic cells were detected in

the peritoneal cavity of patients without a diagnosis of malignant disease.

Dendritic cells have also been observed in solid tumor sections of certain

nongynecologic tumors by immunohistochemical analysis, and a dense

dendritic cell infiltrate has sometimes been seen (Furihata et at, 1992; Inoue et

a/., 1993). These studies did not include an analysis or" differentiation anUgens

or anUgens associated with activation.
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In agreement with previous reports, llneage-negatlve HLA-DR" cells were

found to constitute a minor population in peripheral blood (O'Doherty et al..

1994). The proportions of llneage-negative HLA-DR ° cells was substantially

lower in the peripheral blood of patients with abdominal or pelvic cm'cinomas

compared with the proportion seen in normal donors. This difference could

possibly be related either to prior systemic treatments that patients had

received or to the disease process itself.

The number and proportion of dendritic cells that express antigens of

differentiation and activation could be affected by the presence of cytokines in

the microenvironment. IL-10 is a cytol0ne that is frequently detected in the

ascltes of patients with peritoneal carcinomatosis. We compared the

production of IL-10 with the proportions of dendritic ceils, and found that the

proportions of llneage-negative HLA-DR* cells correlated positively with the

concentration of IL-10 in the ascitic fluid. This could be a direct effect of IL-

l0. IL-10 may be produced by dendritic celia or other IL-10-producing

leukocytes in the peritoneal cavity such as macrophages, which are present in

large numbers in patients who have ovarian or peritoneal carcinomatosls.

Because neopterin is a product of activated macrophages we measured the

concentrations of neopterin in ascites to determine whether there was an

association with the number or proportions of dendritic cells. Neopterin was

detected in most of the ascites, but its concentration in ascites correlated

negatively with the numbers of lineage-negative HLA-DR ° cells. These results

could be related to a previous association that has been shown between
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neopterin production and depressed immunologic responses (Melichar et al..

1996}. Moreover. others have found an association between neopterin levels

and poor prognosis in patients with certain cancers (Reibnegger et al.. 1986;

Weiss et aL. 1993).

The antigen-presenting function of dendritic cells depends on the

coexpression of MHC class II antigens and costtmulatory molecules (June et

a/., 1994; Lenschow eta/., 1996; Ltnsley and Ledbetter, 1993). The intensity of

I-KA-DR expression was detected at significantly lower levels on dendritic cells

of peripheral blood and ascites from patients compared with levels found on

peripheral blood cells from normal donors. Expression of CD80 on lineage-

negative HLA-DR" ceils was low or absent in most of the specimens studied. In

contrast, CD86 was usually present but at significantly lower levels on lineage-

negative HLA-DR* ceils from ascites compared with the levels found on

peripheral blood. This finding suggests that certain as yet undefined factors in

the tumor microenvironment could have down-regulatory effects on CD86

expression on lineage-negative HLA-DR* cells, or could otherwise influence the

maturity of dendritic cells in the peritoneal cavity. IL-10 has been shown to

decrease the expression of CD86 antigen on human dendritic ceils (Buelens et

a/., 1995). In the current study, IL-10 was detected in most ascites but no

relationship was detected between the expression of CD86 on lineage-negative

HI.A-DR" cells and the concentration of IL-10 in ascitic fluid. However. this

does not necessarily imply that IL-10 is not an important contributing factor to

the reduced proportion of dendritic cells that express either CD80 or CD56 in

V/DO.
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The finding of a low expression of MHC class II antigens and

costtmulatory molecules on lineage-negative HLAoDR* cells in ascites from

patients with peritoneal carctnomatosis suggests that dendritic cells may not

function adequately as antigen-presenting cells in the tumor microenvtronment

of these patients, and this aspect deserves further study. Low expression of

MI-IC class II antigens could be responsible for suboptimal stimulation through

the T=cell receptor, which then increases the oppommlty for an anerglc

response (Krtmmlel and Allison. 1995; Lenschow eta/.. 1996; IAnsley and

Ledbetter, 1993). Decreased expression of costlmulatory factors on the lineage-

negative HLA-DR" ceils could have a similar result.

In a study of accessory molecules on lineage-negative HLA-DR" ceils, we

observed high expression of CD54. CD58 expression, however, was variable

and significantly lower in ascites th_Ln in peripheral blood. CD45RO and

CD11c have been reported to identify a subset of dendritic ceils that have

undergone activation and differentiation (O'Doherty et a/., 1994). Our studies

show that the proportion of dendritic ceils in ascites that express these

markers is lower than the proportion of dendritic cells in peripheral blood.

Dendritic cells have been reported to show a decrease in CD4' expression during

the differentiation process (O'Doherty et at., 1993). The lower proportion of

CD4" lineage-negative HI.A-DR" ceils in the peripheral blood compared with

that in ascites may be an indication of less mature functional characteristics

of lineage-negative HI.A-DR" leukocytes in malignant ascites. The same
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conclusion could be reached from the express/on of the CD45 tsoform on

ILneage-negat./ve HLA-DR ° cells/n per/pheral blood and ascltes.

In summary, we have detected I/neage-negat/ve I-II_-DR ÷ leukocytes /n

the mal/gnant asc/tes assoc/ated w/th peritoneal carclnomatos/s. These cells

show a pattern of marface ant/gens that are character/st[c of less mature

dendritic cells. Decreases /n the express/on of MHC class II ant/gens and

cost/mulatory or accessov/ molecules on dendr/t/c cells associated wlth

peritoneal carc/noma could be of importance/n enabl/ng the tumor to evade

recognition by the host tmmune system.
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FIGURE 1-- Flow cytometric analysis of lineage-negative HLA DR + ceils

Specimens were processed as described in Material and Methods and

stained with a cocktail of PE-conJugated (a and b), or HTC-conJugated (c and

d) monoclonal antibodies against leukocyte lineage antigens, and FIT_-

conjugated (b), or Tri-color-conJugated (d) antibody against I-KA-DR, or the

appropriate Isotype control antibody (a and c). Cells were then analyzed by

flow cytometry, and the numbers of cells negat/ve for leukocyte lineage antigens

and positive for I-ILA-DR were determined. The figure shows results of a

specimens from a representative (Patient 21). Lineage-negative HLA-DR ÷ ceils

represented 5.1% of all mononuclear cells in this specimen. A live gate was

placed on the llneage-negative H/A-DR* cell population (e), to analyze the

expression of other surface antigens (see Flg. 2).

FIGURE 2-Expression of differentiation and activation markers on lineage-

negative HI.A-DR + cells

An ascities specimen from Patient 21 was processed and stained as in

Figure 1. In addition to the cocktail of FITC-conJugated antibodies against

leukocyte lineage markers and Tri-color-conJugated anti-H/A-DR, the ceils

were labeled with a panel of PE-conJugated antibodies with reactivity to

antigens directed to differentiation and activation associated antigens. A llve

gate was placed on the lineage-negative HI.A-DR" cell population (Fig. l e), and

5000 events were collected. The figure shows the following histograms: (A) IgG 1

Isotype control antibody, (b) CD86, (c) CDS0, (d} CDIIc; (e) IgG2 Isotype

control. (f) CD54. (g) CD58, (h) CD4, (i) CD45RA and (J) CD45RO.
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FIGURE 3- Comparison in peripheral blood and malignant ascites of the

proportions of llneage-negattve HLA-DR ° cells and the coexpression of CD4,

CD86 and CD58 surface markers on these cells

Specimens of ascltes (solid bars) and peripheral blood (hatched bars)

obtained from the same patients were processed as described in Materials and

Methods and analyzed (a) for proportions of llneage-negatlve HI,A-DR* cells,

expression of (b) CD4, (c) CD86 and (d) CD58. Values are shown for 7 patients

except for (d) which shows values for 6 patients. Differences between findings

in peripheral blood and ascites were statlstically significant (Wflcoxon paired

test, p < 0.05}.

I_IGURE 4-- Correlation between the number of llneage-negatlve I-II.A'DR +

cells, IL-I0 concentrations, and the phenotyplc markers

The percentage of CD45RO* llneage-negative HI.A-DR ° cells in ascites

was positively correlated with the proportion of ceils that were (a) CDI Ic °, and

Co) CD80 °. Spearman correlation coefficients (rs) and significance levels are

indicated on the figure.
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FIGUI_ 5-- Comparison of cell surface markers on lineage-negative HI.A-DR"

ceils and CD 14" ceUs in malignant ascites

Cells from Patient I I were stained as described in Figures 1 and 2 using

FITC-conJugated anti-CD14 and a panel of PE-conJugated antibodies with

speciflcitles for activation and differentiation antigens. Proportions of lineage-

negative I-KA-DR" or CD14" cells coexpressmg each antigen indicated on the

vertical axis. LN_DR ". Lineage-negative HLA-DR _ cells.

PIGUR_ 6- Relative expression of HI.A-DR on LN-CD4 + ceils

Ceils from perlpheral blood of normal donors and patients and malignant

ascites were stained with FITC-conJugated leukocyte lineage cocktail, PE-

conjugated anti-CD4, and Tri-color-conJugated anti-HI.A-DR or Tri-color

isotype control. A live gate was placed on the lineage-negatlve CD4" population

(not shown). Relative fluorescence intensity of H/A-DR expression was

determined by dividing the mean fluorescence intensity of I-II_-DR stained ceils

by the mean fluorescence intensity of the isotype control as described in

Materials and Methods. The relative fluorescence Intensity of I-ILA-DR in the

lineage-negative I-ILA-DR ÷ CD4 ÷ cell population was significantly higher in

normal donors than in peripheral blood (Mann-Whitney U test, P < 0.05) or

ascites (P < 0.01) from patients.
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FIGb'RB 7- Proportions of llneage-negatlve HLA-DR" cells that express surface

antigens associated with differentiation and activation correlated with the

concentrations of IL-I0 and neopterin in ascitic fluids.

The proportion of llneage-negatlve HLA-DR ° cells and those coexpresslng

CD4 or CD80 in ascttes were determined by two- and three- color flow

cytometry as described for Figures 1 and 2. Concentration levels of IL-10 and

neopterln in ascltlc fluid were meamrred by EUSA.

(a) The concentrations of IL-10 correlated positively with the percentage

of lineage-negative HI.A-DR* cells, (b) Concentrations of neopterin correlated

negatively with the number of lineage-negative I-II_-DR ÷ cells and (c) with the

expression of CD4 on these ceils (d) Positive correlation was observed between

the concentration of neopterin and the expression of CD80 on llneage-negative

HLA-DR ° ceils.



TABLE!

CUn/cal and pathological characte_dstlcs of patients

Age (y_| Disease Tumor h/stology Grade
eta_e

66' Recurrent PD

2 63 Recurrent NA
3 41 l]Ic PD
4 64 Recurrent PD

Mixed,- serous, endometrold.
undifferentiated ovarian ¢mrcinoma
Adenocarclnoma of unknown ori_n
Serous ovarian carcinoma
Mlxed-- dear ceil
undifferentiated ovarian carcinoma
clear cell ovarian carcinoma
Serous ovarian carcinoma
Serous ovarian carcinoma

5 71 Recurrent PD
6 54 I_ PD
7 73 Recurrent NS
8 57 Recurrent PD

25 63 Recurrent PD

26 42 I

Mixed ML1Uerlan tumor, serous carcinoma.

spindle cell sarcoma
9 49 Recurrent Serous ovarian carcinoma PD
10 52 Recun'ent Serous ovarian carctnonm I'D
11 62 Nc Mixed-- s_s, undiff ovarlm2 _ I'D
12 58 _t Serous ovmlm1_ PD
13 50 Recurrent Serous ovarian carc/noma PD
14 70 I]Ic Mixed Mallerian tumor PD
15 62 Recurrent UndifferenUated ovarian carcinoma PD
16 37 Recurrent Clear cell ovarian carcinoma NS
17 35 _Ic Undifferentlatedovarian carcinoma PD
18 48 rnc Serous ovarian carcinoma PD
19 59 Recurrent Colon adenocarclnoma WE)
20 77 Recurrent Serous ovarian carcinoma PD
21 40 Recurrent Serous ovarian carcinoma PD
22 45 Ic Granulosa cell tumor WE)
23 45 IV Gastric canc_, signet ring cell PD
24 80 Recurrent Endometrlal carcinoma: ME)

mixed-- serous, endometrlold
Mixed-- serous.
transitional cell ovarian _oma
Endometrlal c_rcinoma, endometrtold;
breast carcinoma

27 67 Recurrent Serous ovarian carcinoma PD
28 71 Rectm-ent Serous ovarian carcinoma PD
29 58 Recurrent Serous _ carcinoma PD
30 78 I Endometrlal carcinoma; endometfloid ME)
32 47 I Serous ovarian carcinoma PD
33 65 Recurrent Serous ovarian carcinoma PD
34 52 Recurrent Mixed. undifferentiated ovarian carcinoma PD
35 46 Recurrent Granulosa cell tumor WD

MD

]P_O]
treatln,

Yes

Y_

No
Yes

Yes

No
Yes
Yes

Yes
Yes

No
Yes
Yes
No

Yes
Yes
No
No

Yes
Yes
Yes
No

Yes
Yes

Yes

Yes

Yes

Yes
Yes
No
No
Yes
Yes
Yes

NA. not available; WE). well differentiated: MD, moderately differentiated: PD, poorly differentiated;
NS.not stated
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APPENDIX 3 C.A. Savary, Ph.D.

flMSA

A Pioneering

Educational Community

December 4, 1996

Dr. Cherylyn Savary
Dept. of Surgical Oncology
MD Anderson Cancer Center
151 Holcolm Bvld., PO Box 18
Houston, TX 77030

Dear Dr. Savary,

One of the goals of IMSA's Mentorship Program is to develop young scientists and
scholars who not only understand and experience research, but are able to make a
significant contribution to the evolving body of knowledge. This is an ideal, and although
most never reach his level as high school students, a few do. Those few have
extraordinary mentors who are able to guide the students' development of specific
research skills and concepts, immerse them in realities of the process and at the same
time instill excitement for research, structure the experience to stretch and
accommodate the student's talents, and be an advocate and friend in the often tangled and
uncertain process.

You are one of these rare mentors; please know how much this is appreciated.
Manu Goyal is one of eleven Illinois students selected to represent the state at this year's
AJAS/AAAS (American Junior Academy of Science/American Association for the
Advancement of Science) annual conference in Seattle in February. Manu will present
his paper, Consequences of Heat-Shocked Proteins and the Dendritic Cell-Tumor
Interaction in the Immune Response Against Breast Cancer, which was done under your
guidance. I hope you will be able to attend AAAS and hear the presentation. Students will
give both oral and poster presentations Friday, February 14; poster presentations from
10 AM -12:30 in Hall C4 of the Seattle Convention Center, oral from 2-5:15 PM (in
six concurrent sessions) in rooms 615-620 of the center. Students will also have the
opportunity to visit with scientists, tour research facilities, and attend AAAS conference
sessions. This is such an incredible opportunity, and could not have happened without
your generous and exceptional guidance.

Again, thank you so much for everything you have done for Manu. Hope to see you
in Seattle.

Enclosed are the students' abstracts: I thought you might find them interestingl

Sincerely,

Dr. Peggy Connolly
Mentorship Coordinator

cc: Dr. Raphael Pollock

1500 West Sullivan Road

Aurora, IL 60506-1000

708-907-5000 Tel

708-907-5976 Fax
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American Association for the Advancement of Science

1997 AAAS Annual Meeting and Science Innovation Exposition - AMSIE '97

American Junior Academy of Science

Poster Abstract Form- Deadline: November 1, 1996

Category (Circle One): Education Life Physical Social

Ph.D.

Consequences of Heat-Shocked Proteins and the Dendritic Ceil-Tumor Interaction in

the Immune Response Against Breast Cancer. MANU S. GOYAL (Illinois
Mathematics and Science Academy, 1500 West Sullivan Rd., Aurora. IL 60506-1000),
DR. CHERYLYN A. SAVARY (Dept. of Surgical Oncology, MD Anderson Cancer
Center, 1515 Holcolm Blvd., PO Box 18, Houston, TX 77030)

Dendritic Ceils (DC) are professional antigen-presenting cells that have been shown to
effectively immunize lymphocytes against tumors. This study investigated DC ability
to kill, bind, and respond to breast tumor cells. Some of the tumor cells were heat-
shocked prior to incubation in order to induce Heat-Shocked Proteins (Hsp) and
investigate their ¢ffea on DC. Hsp have been attributed as targets to the immune
system as well as protective aids to breast lxtmor cells. No significant tumor _,tasis by
DC was detected as tested in a _tCr release assay. We found isolated DC to bind to
tumor cells as measured using flow cytomet_ analysis, but when B-cells and T-cells
were included, they seemingly did not. This suggests that B-Cell, T-Cell, and DC
ratios may affect the immune response to breast cancer. Hsp made no significant
diffenmce in this test. The expression of several DC surface markers, measmcd by flow
cytometry analysis, increased when incubated with breast tumor ceils. Hsp lowered this
expression significantly. This suggests that Hsp may protect breast tumors fi'om the
immune system. These results indicate a novel rule for both Hsp and DC, and may
potentially lead to a new form of immunotherapy for breast cancer.

Presenter's Name: Manu S. Goyal
Mailing Address: 228 Whispering Hills Rd.
City/State/Zip: Naperville, IL 60540
_hone: (630) 420-8880 (weekends)

: (630) 907-5250 (weekdays)

School Presenter Attends: Illinois Mathematics

and Science Academy (IMSA)
Cummt Grade Level: 12th

Academy You Represent: Illinois
Junior Academy of Science

Funding Sponsor: IMSA Fund for
Advancement of Education

Research Advisor: Dr. Cherylyn A. Sava_
Affiliation: MD Anderson Cancer Center

Daytime Phone: (713)792-3134

Name of School Sponsoring Research:
MD Anderson Cancer Center/NASA Shazp

Academy Sponsor: Dr. Peggy Connolly
Daytime Phone: 630-907-5985


